\(\int \frac {\tan ^4(d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \, dx\) [41]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 662 \[ \int \frac {\tan ^4(d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \, dx=\frac {\arctan \left (\frac {\sqrt {a-b+c} \tan (d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 \sqrt {a-b+c} e}+\frac {\tan (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{\sqrt {c} e \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )}-\frac {\sqrt [4]{a} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \tan (d+e x)}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right ) \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right ) \sqrt {\frac {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}{\left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )^2}}}{c^{3/4} e \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}+\frac {\sqrt [4]{a} \left (\sqrt {a}-2 \sqrt {c}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \tan (d+e x)}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right ) \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right ) \sqrt {\frac {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}{\left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )^2}}}{2 \left (\sqrt {a}-\sqrt {c}\right ) c^{3/4} e \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}+\frac {\left (\sqrt {a}+\sqrt {c}\right ) \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {a}-\sqrt {c}\right )^2}{4 \sqrt {a} \sqrt {c}},2 \arctan \left (\frac {\sqrt [4]{c} \tan (d+e x)}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right ) \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right ) \sqrt {\frac {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}{\left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )^2}}}{4 \sqrt [4]{a} \left (\sqrt {a}-\sqrt {c}\right ) \sqrt [4]{c} e \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \]

[Out]

1/2*arctan((a-b+c)^(1/2)*tan(e*x+d)/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2))/e/(a-b+c)^(1/2)+(a+b*tan(e*x+d)^2
+c*tan(e*x+d)^4)^(1/2)*tan(e*x+d)/e/c^(1/2)/(a^(1/2)+c^(1/2)*tan(e*x+d)^2)-a^(1/4)*(cos(2*arctan(c^(1/4)*tan(e
*x+d)/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*tan(e*x+d)/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*tan(e*x+d)/a
^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*((a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)/(a^(1/2)+c^(1/2)*tan(e*x+d)^2)^2)
^(1/2)*(a^(1/2)+c^(1/2)*tan(e*x+d)^2)/c^(3/4)/e/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)+1/2*a^(1/4)*(cos(2*arc
tan(c^(1/4)*tan(e*x+d)/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*tan(e*x+d)/a^(1/4)))*EllipticF(sin(2*arctan(c^(
1/4)*tan(e*x+d)/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)-2*c^(1/2))*((a+b*tan(e*x+d)^2+c*tan(e*x+d)
^4)/(a^(1/2)+c^(1/2)*tan(e*x+d)^2)^2)^(1/2)*(a^(1/2)+c^(1/2)*tan(e*x+d)^2)/c^(3/4)/e/(a^(1/2)-c^(1/2))/(a+b*ta
n(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)+1/4*(cos(2*arctan(c^(1/4)*tan(e*x+d)/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*
tan(e*x+d)/a^(1/4)))*EllipticPi(sin(2*arctan(c^(1/4)*tan(e*x+d)/a^(1/4))),-1/4*(a^(1/2)-c^(1/2))^2/a^(1/2)/c^(
1/2),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+c^(1/2))*((a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)/(a^(1/2)+c^(1/2)*ta
n(e*x+d)^2)^2)^(1/2)*(a^(1/2)+c^(1/2)*tan(e*x+d)^2)/a^(1/4)/c^(1/4)/e/(a^(1/2)-c^(1/2))/(a+b*tan(e*x+d)^2+c*ta
n(e*x+d)^4)^(1/2)

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 662, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3781, 1339, 1117, 1209, 1720} \[ \int \frac {\tan ^4(d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \, dx=\frac {\sqrt [4]{a} \left (\sqrt {a}-2 \sqrt {c}\right ) \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right ) \sqrt {\frac {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}{\left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \tan (d+e x)}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 c^{3/4} e \left (\sqrt {a}-\sqrt {c}\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}-\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right ) \sqrt {\frac {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}{\left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \tan (d+e x)}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{c^{3/4} e \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}+\frac {\arctan \left (\frac {\sqrt {a-b+c} \tan (d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 e \sqrt {a-b+c}}+\frac {\left (\sqrt {a}+\sqrt {c}\right ) \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right ) \sqrt {\frac {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}{\left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {a}-\sqrt {c}\right )^2}{4 \sqrt {a} \sqrt {c}},2 \arctan \left (\frac {\sqrt [4]{c} \tan (d+e x)}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{4 \sqrt [4]{a} \sqrt [4]{c} e \left (\sqrt {a}-\sqrt {c}\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}+\frac {\tan (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{\sqrt {c} e \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )} \]

[In]

Int[Tan[d + e*x]^4/Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4],x]

[Out]

ArcTan[(Sqrt[a - b + c]*Tan[d + e*x])/Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4]]/(2*Sqrt[a - b + c]*e) + (
Tan[d + e*x]*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])/(Sqrt[c]*e*(Sqrt[a] + Sqrt[c]*Tan[d + e*x]^2)) - (
a^(1/4)*EllipticE[2*ArcTan[(c^(1/4)*Tan[d + e*x])/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4]*(Sqrt[a] + Sqrt[c]*Ta
n[d + e*x]^2)*Sqrt[(a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4)/(Sqrt[a] + Sqrt[c]*Tan[d + e*x]^2)^2])/(c^(3/4)*e
*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4]) + (a^(1/4)*(Sqrt[a] - 2*Sqrt[c])*EllipticF[2*ArcTan[(c^(1/4)*T
an[d + e*x])/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4]*(Sqrt[a] + Sqrt[c]*Tan[d + e*x]^2)*Sqrt[(a + b*Tan[d + e*x
]^2 + c*Tan[d + e*x]^4)/(Sqrt[a] + Sqrt[c]*Tan[d + e*x]^2)^2])/(2*(Sqrt[a] - Sqrt[c])*c^(3/4)*e*Sqrt[a + b*Tan
[d + e*x]^2 + c*Tan[d + e*x]^4]) + ((Sqrt[a] + Sqrt[c])*EllipticPi[-1/4*(Sqrt[a] - Sqrt[c])^2/(Sqrt[a]*Sqrt[c]
), 2*ArcTan[(c^(1/4)*Tan[d + e*x])/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4]*(Sqrt[a] + Sqrt[c]*Tan[d + e*x]^2)*S
qrt[(a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4)/(Sqrt[a] + Sqrt[c]*Tan[d + e*x]^2)^2])/(4*a^(1/4)*(Sqrt[a] - Sqr
t[c])*c^(1/4)*e*Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1339

Int[(x_)^4/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]
}, Dist[-(2*c*d - a*e*q)/(c*e*(e - d*q)), Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + (-Dist[1/(e*q), Int[(1 - q*x
^2)/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[d^2/(e*(e - d*q)), Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*
x^4]), x], x])] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a] && NeQ[c*d^2 - a*e^2, 0]

Rule 1720

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[-b + c*(d/e) + a*(e/d), 2]*(x/Sqrt[a + b*x^2 + c*x^4])]/(2*d*
e*Rt[-b + c*(d/e) + a*(e/d), 2])), x] + Simp[(B*d + A*e)*(A + B*x^2)*(Sqrt[A^2*((a + b*x^2 + c*x^4)/(a*(A + B*
x^2)^2))]/(4*d*e*A*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticPi[Cancel[-(B*d - A*e)^2/(4*d*e*A*B)], 2*ArcTan[q*x], 1
/2 - b*(A/(4*a*B))], x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^
2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0]

Rule 3781

Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.
) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] :> Dist[f/e, Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)
), x], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^4}{\left (1+x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx,x,\tan (d+e x)\right )}{e} \\ & = \frac {\text {Subst}\left (\int \frac {1+\frac {\sqrt {c} x^2}{\sqrt {a}}}{\left (1+x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx,x,\tan (d+e x)\right )}{\left (1-\frac {\sqrt {c}}{\sqrt {a}}\right ) e}-\frac {\sqrt {a} \text {Subst}\left (\int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+b x^2+c x^4}} \, dx,x,\tan (d+e x)\right )}{\sqrt {c} e}+\frac {\left (\sqrt {a} \left (\sqrt {a}-2 \sqrt {c}\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2+c x^4}} \, dx,x,\tan (d+e x)\right )}{\left (\sqrt {a}-\sqrt {c}\right ) \sqrt {c} e} \\ & = \frac {\arctan \left (\frac {\sqrt {a-b+c} \tan (d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 \sqrt {a-b+c} e}+\frac {\tan (d+e x) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}{\sqrt {c} e \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )}-\frac {\sqrt [4]{a} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \tan (d+e x)}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right ) \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right ) \sqrt {\frac {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}{\left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )^2}}}{c^{3/4} e \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}+\frac {\sqrt [4]{a} \left (\sqrt {a}-2 \sqrt {c}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \tan (d+e x)}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right ) \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right ) \sqrt {\frac {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}{\left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )^2}}}{2 \left (\sqrt {a}-\sqrt {c}\right ) c^{3/4} e \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}+\frac {\left (\sqrt {a}+\sqrt {c}\right ) \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {a}-\sqrt {c}\right )^2}{4 \sqrt {a} \sqrt {c}},2 \arctan \left (\frac {\sqrt [4]{c} \tan (d+e x)}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right ) \left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right ) \sqrt {\frac {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}{\left (\sqrt {a}+\sqrt {c} \tan ^2(d+e x)\right )^2}}}{4 \sqrt [4]{a} \left (\sqrt {a}-\sqrt {c}\right ) \sqrt [4]{c} e \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 16.75 (sec) , antiderivative size = 533, normalized size of antiderivative = 0.81 \[ \int \frac {\tan ^4(d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \, dx=\frac {\frac {\sqrt {(3 a+b+3 c+4 (a-c) \cos (2 (d+e x))+(a-b+c) \cos (4 (d+e x))) \sec ^4(d+e x)} \sin (2 (d+e x))}{\sqrt {2}}+\frac {\frac {i \sqrt {2} \left (\left (-b+\sqrt {b^2-4 a c}\right ) E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \tan (d+e x)\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )+\left (b+2 c-\sqrt {b^2-4 a c}\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \tan (d+e x)\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-2 c \operatorname {EllipticPi}\left (\frac {b+\sqrt {b^2-4 a c}}{2 c},i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \tan (d+e x)\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c \tan ^2(d+e x)}{b+\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c \tan ^2(d+e x)}{b-\sqrt {b^2-4 a c}}}}{\sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}}}-4 \cos (d+e x) \sin (d+e x) \left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}}{4 c e} \]

[In]

Integrate[Tan[d + e*x]^4/Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4],x]

[Out]

((Sqrt[(3*a + b + 3*c + 4*(a - c)*Cos[2*(d + e*x)] + (a - b + c)*Cos[4*(d + e*x)])*Sec[d + e*x]^4]*Sin[2*(d +
e*x)])/Sqrt[2] + ((I*Sqrt[2]*((-b + Sqrt[b^2 - 4*a*c])*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*
c])]*Tan[d + e*x]], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])] + (b + 2*c - Sqrt[b^2 - 4*a*c])*EllipticF
[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*Tan[d + e*x]], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*
c])] - 2*c*EllipticPi[(b + Sqrt[b^2 - 4*a*c])/(2*c), I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*Tan[d +
 e*x]], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*Tan[d + e*x]^2)/(b
 + Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*Tan[d + e*x]^2)/(b - Sqrt[b^2 - 4*a*c])])/Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]
 - 4*Cos[d + e*x]*Sin[d + e*x]*(a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4))/Sqrt[a + b*Tan[d + e*x]^2 + c*Tan[d
+ e*x]^4])/(4*c*e)

Maple [A] (verified)

Time = 0.79 (sec) , antiderivative size = 646, normalized size of antiderivative = 0.98

method result size
derivativedivides \(\frac {-\frac {\sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) \tan \left (e x +d \right )^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) \tan \left (e x +d \right )^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {\tan \left (e x +d \right ) \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}}-\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) \tan \left (e x +d \right )^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) \tan \left (e x +d \right )^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {\tan \left (e x +d \right ) \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {\tan \left (e x +d \right ) \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}+\frac {\sqrt {2}\, \sqrt {1+\frac {b \tan \left (e x +d \right )^{2}}{2 a}-\frac {\tan \left (e x +d \right )^{2} \sqrt {-4 a c +b^{2}}}{2 a}}\, \sqrt {1+\frac {b \tan \left (e x +d \right )^{2}}{2 a}+\frac {\tan \left (e x +d \right )^{2} \sqrt {-4 a c +b^{2}}}{2 a}}\, \operatorname {EllipticPi}\left (\frac {\tan \left (e x +d \right ) \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, -\frac {2 a}{-b +\sqrt {-4 a c +b^{2}}}, \frac {\sqrt {-\frac {b +\sqrt {-4 a c +b^{2}}}{2 a}}\, \sqrt {2}}{\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}\right )}{\sqrt {-\frac {b}{a}+\frac {\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}}}{e}\) \(646\)
default \(\frac {-\frac {\sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) \tan \left (e x +d \right )^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) \tan \left (e x +d \right )^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {\tan \left (e x +d \right ) \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}}-\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) \tan \left (e x +d \right )^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) \tan \left (e x +d \right )^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {\tan \left (e x +d \right ) \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {\tan \left (e x +d \right ) \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}+\frac {\sqrt {2}\, \sqrt {1+\frac {b \tan \left (e x +d \right )^{2}}{2 a}-\frac {\tan \left (e x +d \right )^{2} \sqrt {-4 a c +b^{2}}}{2 a}}\, \sqrt {1+\frac {b \tan \left (e x +d \right )^{2}}{2 a}+\frac {\tan \left (e x +d \right )^{2} \sqrt {-4 a c +b^{2}}}{2 a}}\, \operatorname {EllipticPi}\left (\frac {\tan \left (e x +d \right ) \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, -\frac {2 a}{-b +\sqrt {-4 a c +b^{2}}}, \frac {\sqrt {-\frac {b +\sqrt {-4 a c +b^{2}}}{2 a}}\, \sqrt {2}}{\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}\right )}{\sqrt {-\frac {b}{a}+\frac {\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}}}{e}\) \(646\)

[In]

int(tan(e*x+d)^4/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/e*(-1/4*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*tan(e*x+d)^2)^(1/2)*(4+2*(b
+(-4*a*c+b^2)^(1/2))/a*tan(e*x+d)^2)^(1/2)/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)*EllipticF(1/2*tan(e*x+d)*2^
(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-1/2*a*2^(1/2)/((-b+(-4*
a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*tan(e*x+d)^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*tan(
e*x+d)^2)^(1/2)/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*tan(e*x+d)*2^(1/
2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*tan(e*x+d)*2
^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2)))+2^(1/2)/(-1/a*b+1/a*(
-4*a*c+b^2)^(1/2))^(1/2)*(1+1/2/a*b*tan(e*x+d)^2-1/2/a*tan(e*x+d)^2*(-4*a*c+b^2)^(1/2))^(1/2)*(1+1/2/a*b*tan(e
*x+d)^2+1/2/a*tan(e*x+d)^2*(-4*a*c+b^2)^(1/2))^(1/2)/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)*EllipticPi(1/2*ta
n(e*x+d)*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),-2/(-b+(-4*a*c+b^2)^(1/2))*a,(-1/2*(b+(-4*a*c+b^2)^(1/2))/a
)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)))

Fricas [F]

\[ \int \frac {\tan ^4(d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \, dx=\int { \frac {\tan \left (e x + d\right )^{4}}{\sqrt {c \tan \left (e x + d\right )^{4} + b \tan \left (e x + d\right )^{2} + a}} \,d x } \]

[In]

integrate(tan(e*x+d)^4/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2),x, algorithm="fricas")

[Out]

integral(tan(e*x + d)^4/sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a), x)

Sympy [F]

\[ \int \frac {\tan ^4(d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \, dx=\int \frac {\tan ^{4}{\left (d + e x \right )}}{\sqrt {a + b \tan ^{2}{\left (d + e x \right )} + c \tan ^{4}{\left (d + e x \right )}}}\, dx \]

[In]

integrate(tan(e*x+d)**4/(a+b*tan(e*x+d)**2+c*tan(e*x+d)**4)**(1/2),x)

[Out]

Integral(tan(d + e*x)**4/sqrt(a + b*tan(d + e*x)**2 + c*tan(d + e*x)**4), x)

Maxima [F]

\[ \int \frac {\tan ^4(d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \, dx=\int { \frac {\tan \left (e x + d\right )^{4}}{\sqrt {c \tan \left (e x + d\right )^{4} + b \tan \left (e x + d\right )^{2} + a}} \,d x } \]

[In]

integrate(tan(e*x+d)^4/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(e*x + d)^4/sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\tan ^4(d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \, dx=\text {Timed out} \]

[In]

integrate(tan(e*x+d)^4/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^4(d+e x)}{\sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \, dx=\int \frac {{\mathrm {tan}\left (d+e\,x\right )}^4}{\sqrt {c\,{\mathrm {tan}\left (d+e\,x\right )}^4+b\,{\mathrm {tan}\left (d+e\,x\right )}^2+a}} \,d x \]

[In]

int(tan(d + e*x)^4/(a + b*tan(d + e*x)^2 + c*tan(d + e*x)^4)^(1/2),x)

[Out]

int(tan(d + e*x)^4/(a + b*tan(d + e*x)^2 + c*tan(d + e*x)^4)^(1/2), x)